Graphics Programming I

ค Agenda:

- Linear algebra primer
- Transformations in OpenGL
- Timing for animation
- Begin first programming assignment

Linear algebra primer

- Three important data types:
- Scalar values
- Row / column vectors
- 1×4 and 4×1 are the sizes we'll most often encounter
- Square matrices
- 4×4 is the size we'll most often encounter

Scalars

\rightleftharpoons These are the numbers you know!

- Example: 3.14, 5.0, 99.9, $\sqrt{2}$, etc.

Row vectors

θ These are special matrices that have multiple columns but only one row.

- Example: $\left.\begin{array}{lll}5.0 & 3.14 & 37\end{array}\right]$

ค Add and subtract the way you would expect.

- Example: $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}9 & 10 & 11\end{array}\right]=\left[\begin{array}{lll}10 & 12 & 14\end{array}\right]$
- Both vectors must be the same size.
- Operate with scalars the way you would expect.
- Example: $3.2 \times\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}3.2 & 6.4 & 9.6\end{array}\right]$
\rightarrow Notice that vector multiplication is missing...

Column vectors

θ These are special matrices that have multiple rows but only one column.

- Example: $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Ə Work just like row vectors.

Vector Operations

ϑ There are only a few operations specific to vectors that are really important for us.

Dot Product

\quad Noted as a "dot" between two vectors (e.g., A•B)

- Also known as "inner product."
- Multiply matching elements, sum all the results.
- Example:

$$
\left[\begin{array}{ll}
2.3 & 1.2
\end{array}\right] \cdot\left[\begin{array}{ll}
1.7 & 6.5
\end{array}\right]=(2.3 * 1.7)+(1.2 * 6.5)=11.71
$$

Vector Magnitude

- Noted by vertical bars, like absolute value.
θ Take the square root of the dot product of the vector with itself...like absolute value.
$\boldsymbol{\text { Result is the magnitude (a.k.a. length) of the }}$ vector.
- Example:

$$
\begin{gathered}
\left.\left|\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]\right|=\sqrt{\left[\frac{\sqrt{2}}{2}\right.} \frac{\sqrt{2}}{2}\right] \cdot\left[\begin{array}{ll}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]= \\
\sqrt{\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}=\sqrt{\frac{2}{4}+\frac{2}{4}}=1
\end{gathered}
$$

Normalize

- Noted by dividing a vector by its magnitude.
- Example: $\frac{A}{|A|}$
\ominus Results in a vector with the same direction, but a magnitude of 1.0.
\quad Works the same as with scalars.

Why is the dot product so interesting?

- In 3-space, the dot of two unit vectors is the cosine of the angle between the two vectors.
- If the vectors are not already normalized (unit length), we can divide the dot product by the magnitudes.
- Example:

$$
\frac{a \cdot b}{|a||b|}=\cos \theta
$$

Cross Product

\rightarrow Noted as an X between two vectors (e.g., $a \times b$)
\rightleftharpoons Derivation of the cross product is not important. The math is:

$$
a \times b=\left[\begin{array}{lll}
a_{y} b_{z}-a_{z} b_{y} & a_{z} b_{x}-a_{x} b_{z} & a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

\rightleftharpoons Only valid in 3-dimensions.

Why is the cross product so interesting?

\quad Two really useful properties.

- The result of the cross product between two vectors is a new vector that is perpendicular (also called normal) to both vectors.
- If the source vectors are normalized:

$$
|a \times b|=\sin \theta
$$

Matrices

- Like vectors, but have multiple rows and columns.
- Example: $\left[\begin{array}{llll}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0\end{array}\right]$

ค Add and subtract like you would expect.

- Like vectors, both matrices must be the same size...in both dimensions.

Matrix / vector multiplication

- Special rules apply that make it different from scalar multiplication.
- Not commutative! e.g., $M \times N \neq N \times M$
- Is associative. e.g., (NM)P=N(MP)
- Column count of first matrix must match row count of second matrix.
- If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can do $M \times N$, but not $N \times M$.
- If the source matrices are n-by-m and m-by-p, the resulting matrix will be n-by-p.

Matrix / vector multiplication (cont.)

\geqslant To calculate an element of the matrix, C, resulting from $A B$:

$$
C_{i j}=\sum_{r=1}^{n} a_{i r} b_{r j}
$$

- What does this look like?

Matrix / vector multiplication (cont.)

〇To calculate an element of the matrix, C , resulting from $A B$:

$$
C_{i j}=\sum_{r=1}^{n} a_{i r} b_{r j}
$$

- What does this look like?
- The dot product of a row of A with a column of B.
- This is why the column count of A must match the row count of B...otherwise the dot product wouldn't work.

Multiplicative Identity

\ni There is an identity for matrix multiplication.

$$
I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Ə Just like any other multiplicative identity, $A I=A$

- If you pretend that a scalar is a 1×1 matrix, this should make sense.

Transpose

© Noted by a "T" in the exponent position (e.g., M ${ }^{T}$).

- The rows become the columns, and the columns become the rows.
- Example:

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
6 & 7
\end{array}\right]^{T}=\left[\begin{array}{lll}
2 & 4 & 6 \\
3 & 5 & 7
\end{array}\right]
$$

References

http://en.wikipedia.org/wiki/Matrix_multiplication http://en.wikipedia.org/wiki/Dot_product http://en.wikipedia.org/wiki/Cross_product

Rotation using matrices

ค Rotation around the Z-axis.

- If Θ is 0 , this is the identity matrix.
- Rotations around the Y-axis.
$\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Question!

- Looking at the previous equations, we can do a rotation using 4 multiplies and 2 adds, but the matrix multiply requires 16 multiplies and 12 adds.
- $x^{\prime}=x \cos \theta+y \sin \Theta$
- $y^{\prime}=-x \sin \theta+y \cos \Theta$
- $z^{\prime}=z$
© Why use the matrix method?

Matrices are more expressive!

∂ If we want to do a series of rotations with matrices we could do:

$$
\begin{aligned}
v^{\prime} & =M_{1} v \\
v^{\prime \prime} & =M_{2} v^{\prime} \\
v^{\prime \prime} & =M_{3} v^{\prime \prime}
\end{aligned}
$$

∂ Which is the same as:

$$
M_{3}\left(M_{2}\left(M_{1} v\right)\right)
$$

© Look familiar?

Matrices are more expressive!

If we want to do a series of rotations with matrices we could do:

$$
\begin{aligned}
v^{\prime} & =M_{1} v \\
v^{\prime \prime} & =M_{2} v^{\prime} \\
v^{\prime \prime \prime} & =M_{3} v^{\prime \prime}
\end{aligned}
$$

\quad Which is the same as:

$$
M_{3}\left(M_{2}\left(M_{1} v\right)\right)
$$

ϑ Look familiar?

- Matrix multiplication is associative!
$\left(M_{3} M_{2} M_{1}\right) v$

Translations with Matrices

ə Points are stored as $p=[x y z 1]$
ค Remember the definition of matrix multiplicetien: $M_{11}+p_{y} M_{12}+p_{z} M_{13}+p_{w} M_{14}$

$$
\begin{aligned}
& p_{y}^{\prime}=p_{x} M_{21}+p_{y} M_{22}+p_{z} M_{23}+p_{w} M_{24} \\
& p_{z}^{\prime}=p_{x} M_{31}+p_{y} M_{32}+p_{z} M_{33}+p_{w} M_{34} \\
& p_{w}^{\prime}=p_{x} M_{41}+p_{y} M_{42}+p_{z} M_{43}+p_{w} M_{44}
\end{aligned}
$$

\quad Since p_{w} is always 1 , the $4^{\text {th }}$ column of the matrix acts as a translation.

Scaling with Matrices

\rightleftharpoons To scale, we just want to multiply each component by a scale factor. Piece of cake!

$$
M=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

References

http://en.wikipedia.org/wiki/Rotation_matrix

Break

OpenGL Transformation Matrices

\rightleftharpoons OpenGL has several matrix "stacks."

- Each stack has a specific purpose.
- Active stack selected with glMatrixMode().
- OpenGL is modal, so ones a matrix stack is selected, all matrix commands will affact that stack.
ค For object transformations, use the GL_MODELVIEW matrix.

Loading Matrices

- Initialize to the identity matrix with glLoadIdentity ().
- Load the matrix from your program with glLoadMatrix[fd]().
- GL matrices are column major, but C stores 2dimensional arrays row major. Watch out!
- We'll use glLoadTransposeMatrix[fd] () later.
© Can read matrix back with glGetFloatv ().

Matrix Operations

© Multiply a matrix with the top of the stack using glMultMatrix[fd]().

- This is a post-multiply. $\quad M_{\text {top }}=M_{\text {top }} * M$
ə gIPushMatrix() and gIPopMatrix() save and restore the current top of stack.
- This means you can push, make changes, then pop to get back the previous matrix.
- The stack has a limited depth, so don't go crazy!

Built-in Transformation Operators

- Several routines to create and concatenate common transformations:
- glRotate[fd] () - Create a rotation around an abritrary vector.
- glTranslate[fd]()
- glScale[fd]()

Orthonormal Basis

Ө Yes, it's a mouthful...but what does it mean?
\rightarrow A vector space where all of the components are orthogonal to each other, and each is normal.

- Normal meaning unit length.
- Orthogonal meaning at right angles to each other.

ค All pure rotation matrices (i.e., no scaling) are orthonormal bases.

- As is the identity matrix!
\ominus But how is this useful?

Question!

ə Q: Given a world position for a camera, a world position to point the camera at, and an "up" direction, how can we construct a transformation using just rotations and translations?

Question!

๑ Q: Given a world position for a camera, a world position to point the camera at, and an "up" direction, how can we construct a transformation using just rotations and translations?
ค A: We can't. We can construct an orthonormal basis from those 3 vectors.

Camera "Look At" Matrix

ϑE is the eye position
$\vartheta \mathrm{V}$ is the point being viewed
$\partial \mathrm{U}$ is the "up" direction
\bigcirc The function gluLookAt does this.

Example

$$
\begin{gathered}
U=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right], E=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right], V=\left[\begin{array}{lll}
\sin \frac{\pi}{2} & 0 & -\cos \frac{\pi}{2}
\end{array}\right] \\
f=V \\
s=f \times U=\left[\begin{array}{llll}
f_{y} U_{z}-f_{z} U_{y} & f_{z} U_{x}-f_{x} U_{z} & f_{x} U_{y}-f_{y} U_{x}
\end{array}\right]=\left[\begin{array}{lll}
\cos \frac{\pi}{2} & 0 & \sin \frac{\pi}{2}
\end{array}\right] \\
t=s \times f=\left[\begin{array}{lll}
s_{y} f_{z}-s_{z} f_{y} & s_{z} f_{x}-s_{x} f_{z} & s_{x} f_{y}-s_{y} f_{x}
\end{array}\right]=\left[\begin{array}{ll}
0 & -\left(\sin \frac{\pi}{2}\right)^{2}+\left(\cos \frac{\pi}{2}\right)^{2}
\end{array}\right] \\
M=\left[\begin{array}{cccc}
\cos \frac{\pi}{2} & 0 & \sin \frac{\pi}{2} & 0 \\
0 & 1 & 0 & 0 \\
-\sin \frac{\pi}{2} & 0 & \cos \frac{\pi}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Look familiar?

$$
\begin{aligned}
& M=\left[\begin{array}{cccc}
\cos \frac{\pi}{2} & 0 & \sin \frac{\pi}{2} & 0 \\
0 & 1 & 0 & 0 \\
-\sin \frac{\pi}{2} & 0 & \cos \frac{\pi}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

References

http://www.wikipedia.org/Orthonormal_basis

Break

Timing for Animation

- Animations should run at a consistent speed regardless of the rendering speed
- If someone starts ripping a CD or compiling a C program in the background, the animation should not slow down.
- What do we need in order to accomplish this?

Timing for Animation

θ Animations should run at a consistent speed regardless of the rendering speed

- If someone starts ripping a CD or compiling a C program in the background, the animation should not slow down.
- What do we need in order to accomplish this?
- We need to know how much time has elapsed since the last frame.
- SDL_GetTicks() gives us this information.
- We also need to think of animation in terms of how

Example

static Uint32 last_t = ~0;
// Calculate time elapsed since last frame.
// SDL_GetTicks returns the time in milliseconds. const Uint32 t = SDL_GetTicks();
if (last_t != (Uint32) ~0) \{ float dt = (float)(t - last_t) / 1000.0;
// One complete revolution every 3 seconds. rotation_angle += dt * ((2.0 * M_PI) / 3.0); \}
// Update last_t.
last_t = t;

Next week...

\ominus Lighting and materials

- Second programming will be assigned.
\ominus First programming assignment is due.

Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM or the Art Institute of Portland.
- OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.
- Khronos and OpenGL ES are trademarks of the Khronos Group.
- Other company, product, and service names may be trademarks or service marks of others.

