Graphics Programming |

> Agenda:

® Linear algebra primer

® Transformations in OpenGL

® Timing for animation

® Begin first programming assignment

9-October-2007 © Copyright Ian D. Romanick 2007

Linear algebra primer

> Three important data types:

e Scalar values

® Row / column vectors

- 1x4 and 4x1 are the sizes we'll most often encounter
® Sguare matrices

- 4x4 is the size we'll most often encounter

9-October-2007 © Copyright Ian D. Romanick 2007

Scalars

> These are the numbers you know!
e Example: 3.14, 5.0, 99.9, V2, etc.

9-October-2007 © Copyright Ian D. Romanick 2007

Row vectors

> These are special matrices that have multiple
columns but only one row.

® Example:
> Add and su

® Example:

12 3

® Both vectors must
> Operate with scalars the way you would expect.
e Example: 32x|1 2 3|=32 64 96
> Notice that vector multiplication is missing...

9-October-2007

50 3.14 37
ptract the way you would expect.

+9 10 11]=/10 12 14

ne the same size.

© Copyright Ian D. Romanick 2007

Column vectors

> These are special matrices that have multiple
rows but only one column.

e Example: |1
2
3.

> Work just like row vectors.

9-October-2007 © Copyright Ian D. Romanick 2007

Veector Operations

> There are only a few operations specific to
vectors that are really important for us.

9-October-2007 © Copyright Ian D. Romanick 2007

Dot Product

> Noted as a “dot” between two vectors (e.g.,A-B)
> Also known as “inner product.”
> Multiply matching elements, sum all the results.

® Example:

23 1.2]11.7 6.5/=(2.3%1.7)+(1.2%6.5)=11.71

9-October-2007 © Copyright Ian D. Romanick 2007

Veector Magnitude

> Noted by vertical bars, like absolute value.

> Take the square root of the dot product of the
vector with itself...like absolute value.

> Result Is the magnitude (a.k.a. length) of the
vector.

e Example: \/5 Q:\/Q \E\/E \E:
2-

2 2 20l2 2

fe (e

9-October-2007 © Copyright Ian D. Romanick 2007

Normalize

> Noted by dividing a vector by its magnitude.

e Example: A
Al

= Results In a vector with the same direction, but
a magnitude of 1.0.

2> Works the same as with scalars.

9-October-2007 © Copyright Ian D. Romanick 2007

Why is the dot product so interesting?

2 In 3-space, the dot of two unit vectors is the
cosine of the angle between the two vectors.

e |f the vectors are not already normalized (unit
length), we can divide the dot product by the
magnitudes.

® Example:

=cos0O

al|b|

9-October-2007 © Copyright Ian D. Romanick 2007

Cross Product

> Noted as an X between two vectors (e.g., axb)

> Derivation of the cross product is not important.
The math Is:

axbz[aybz—azby a,b,—ab, ab,—ab,

= Only valid in 3-dimensions.

9-October-2007 © Copyright Ian D. Romanick 2007

Why is the cross product so interesting?

> Two really useful properties.

® The result of the cross product between two vectors
IS a new vector that is perpendicular (also called
normal) to both vectors.

e |f the source vectors are
normalized:

lax b|=sin0

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices

> Like vectors, but have multiple rows and
columns.

e Example: 1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0

0.0 0.0 00 1.0

> Add and subtract like you would expect.

e Like vectors, both matrices must be the same
size...In both dimensions.

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication

> Special rules apply that make it different from
scalar multiplication.

e Not commutative! e.g., M XN#NXM
® |s associative. e.g., (NM)P=N(MP)

® Column count of first matrix must match row count
of second matrix.

- If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can
do MXN butnot NXM

e If the source matrices are n-by-m and m-by-p, the
resulting matrix will be n-by-p.

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)

> To calculate an element of the matrix, C,
resulting from AB:

C,=2,_,a.b

ir =rj

> What does this look like?

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)

> To calculate an element of the matrix, C,
resulting from AB:

C,=2,_,a.b

ir =rj

> What does this look like?

® The dot product of a row of A with a column of B.

® This is why the column count of A must match the
row count of B...otherwise the dot product wouldn't
work.

9-October-2007 © Copyright Ian D. Romanick 2007

Multiplicative ldentity

> There Is an identity for matrix multiplication.

0 1 r
I[= -
; . 0

> Just like any other multiplicative identity, AI=A

e |[f you pretend that a scalar is a 1x1 matrix, this
should make sense.

9-October-2007 © Copyright Ian D. Romanick 2007

Transpose

> Noted by a “T” in the exponent position
(e.qg.,Mm").

= The rows become the columns, and the
columns become the rows.

® Example:

DB DN
N U1 W
|l
N
I
Y

9-October-2007 © Copyright Ian D. Romanick 2007

References

http://en.wikipedia.org/wiki/Matrix_multiplication
nttp://en.wikipedia.org/wiki/Dot_product

nttp://en.wikipedia.org/wiki/Cross_product

9-October-2007 © Copyright Ian D. Romanick 2007

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

Rotation using matrices

2 Rotation around the c0sO —singd 0
Z-axis. sin@ cos® O
e |If © is 0, this is the 0 0 1
identity matrix. 0 00
2 Rotations around the P S
Y-axis. 0 1 0
—sin@® 0 cosO
0 0 O

9-October-2007 © Copyright Ian D. Romanick 2007

=0 O O

-0 O O

Question!

> Looking at the previous equations, we can do a
rotation using 4 multiplies and 2 adds, but the
matrix multiply requires 16 multiplies and 12
adds.

®eX'=xcos© +ysin©
oy'=-xsin© +ycos O
ez =7

>Why use the matrix method?

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices are more expressive!

2 |f we want to do a series of rotations with
matrices we could do:

v'=M,v
v'=M,v'
V'!':MSV"

> Which iIs the same as:
M3<M2<M1v))

< Look famihar?

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices are more expressive!

2 |f we want to do a series of rotations with
matrices we could do:

v'=M,v
v''=M,v'
V"':MSV"

> Which iIs the same as:
M3(M2(M1V))

< Look famihar?

e Matrix multiplication is associative!
(M;M,M,)v

9-October-2007 © Copyright Ian D. Romanick 2007

Translations with Matrices

SPointsarestoredasp=[xyz1]

> Remember the definition of matrix
mU|t|p|ICﬁxt'IQI1b:XM11-|-pyM12-|-pz M;;+p,M,,
p, =pMy+p ,My+p,My+p,M,,
p, =pMy+p,Ms+p,My+p, M,,
py =pMy+p, Mp+p,Myz+p, My,

>3ince p _Is always 1, the 4" column of the
matrix acts as a translation.

9-October-2007 © Copyright Ian D. Romanick 2007

Scaling with Matrices

> To scale, we just
want to multiply each
component by a scale M=
factor. Piece of cake!

9-October-2007 © Copyright Ian D. Romanick 2007

>

o O O

\n o

o O

o LW o o

- O O O

References

http://en.wikipedia.org/wiki/Rotation_matrix

9-October-2007 © Copyright Ian D. Romanick 2007

http://en.wikipedia.org/wiki/Rotation_matrix

Break

9-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Transformation Matrices

> OpenGL has several matrix “stacks.”

® Each stack has a specific purpose.

® Active stack selected with glMatrixMode().

- OpenGL is modal, so ones a matrix stack is selected, all
matrix commands will affact that stack.

> For object transformations, use the
GL_MODELVIEW matrix.

9-October-2007 © Copyright Ian D. Romanick 2007

Loading Matrices

2 Initialize to the identity matrix with
glLoadIdentity().

> Load the matrix from your program with
glLoadMatrix[£fd] ().

e GL matrices are column major, but C stores 2-
dimensional arrays row major. Watch out!

e We'll use glloadTransposeMatrix[fd] () later.
© Can read matrix back with glGetFloatv().

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix Operations

= Multiply a matrix with the top of the stack using
glMultMatrix[fd]().

® This Is a post-multiply. M opy=M,o,* M

> glPushMatrix() and glPopMatrix() save and
restore the current top of stack.

® This means you can push, make changes, then pop
to get back the previous matrix.

® The stack has a limited depth, so don't go crazy!

9-October-2007 © Copyright Ian D. Romanick 2007

Built-in Transformation Operators

=2 Several routines to create and concatenate
common transformations:

e g]Rotate[fd] () - Create a rotation around an
abritrary vector.

e glTranslate[fd] ()
e glScale[fd] ()

9-October-2007 © Copyright Ian D. Romanick 2007

Orthonormal Basis

2Yes, It's a mouthful...but what does it mean?

> A vector space where all of the components are
orthogonal to each other, and each is normal.

® Normal meaning unit length.
® Orthogonal meaning at right angles to each other.

= All pure rotation matrices (i.e., no scaling) are
orthonormal bases.

® As is the identity matrix!
= But how Is this useful?

9-October-2007 © Copyright Ian D. Romanick 2007

Question!

= Q: Given a world position for a camera, a world
position to point the camera at, and an “up”
direction, how can we construct a
transformation using just rotations and
translations?

9-October-2007 © Copyright Ian D. Romanick 2007

Question!

= Q: Given a world position for a camera, a world
position to point the camera at, and an “up”
direction, how can we construct a
transformation using just rotations and
translations?

2 A: We can't. We can construct an orthonormal
basis from those 3 vectors.

9-October-2007 © Copyright Ian D. Romanick 2007

Camera “Look At” Matrix

SE is the eye position FF:V_EU

>V is the point being F=TE =10
viewed s=uXf

> U is the “up” direction t=sxf -

: 50 i S, —Ek

= The function (.t t _E
gluLookAt does 1= _; _;c _;c e
this. o o0 o 1

9-October-2007 © Copyright Ian D. Romanick 2007

Example

U=0 1 0],E=/0 0 0],V=

sin s 0 —cosE
2 2

f=Vv
s=fxU=|f,U,~f,U, f,U~fU, f.U~fU,

T . Tl
cos— 0 sin—
2 2

2
+

2

TT
COS —

sin s
2

2

t=sxXf=|s,f,~s,f, s,f.=s.f, s.f,=sf,

. TT
S1n —

cos—
2

2

0
1

—sin— 0 cos—
0

)
—_

9-October-2007 © Copyright Ian D. Romanick 2007

Look familiar?

T

— 0 sin— O

COS > sin >
M= 0 : 1 O7T 0
—sin— O — 0

sin > CoS >
0 0 0 1
cosO O sino O.
R— 0 1 0 0
—sin@ 0 cos® O
0 0 0 1_

9-October-2007 © Copyright Ian D. Romanick 2007

References

http://www.wikipedia.org/Orthonormal_basis

9-October-2007 © Copyright Ian D. Romanick 2007

http://www.wikipedia.org/Orthonormal_basis

Break

9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation

= Animations should run at a consistent speed
regardless of the rendering speed

e |f someone starts ripping a CD or compiling a C
program in the background, the animation should
not slow down.

> What do we need in order to accomplish this?

9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation

= Animations should run at a consistent speed
regardless of the rendering speed

e |f someone starts ripping a CD or compiling a C
program in the background, the animation should
not slow down.

> What do we need in order to accomplish this?

® \We need to know how much time has elapsed since
the last frame.
- SDL_GetTicks () gives us this information.

e \We also need to think of animation in terms of how
sounei@NT 1t takes to do something., .,

Example

static Uint32 last_t = ~0;

// Calculate time elapsed since last frame.
// SDL_GetTicks returns the time 1n milliseconds.
const Uint32 t = SDL_GetTicks();

if (last_t != (Uint32) ~0) {
float dt = (float)(t - last_t) / 1000.0;

// One complete revolution every 3 seconds.
rotation_angle += dt * ((2.0 * M_PI) / 3.0);
}

// Update last_t.
last_t = t;

9-October-2007 © Copyright Ian D. Romanick 2007

Next week...

> Lighting and materials
> Second programming will be assigned.
> First programming assignment is due.

9-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement

> This work represents the view of the authors and does not necessarily
represent the view of IBM or the Art Institute of Portland.

> OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

= Khronos and OpenGL ES are trademarks of the Khronos Group.

> Other company, product, and service names may be trademarks or
service marks of others.

9-October-2007 © Copyright Ian D. Romanick 2007

