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Graphics Programming I

Agenda:
● Linear algebra primer

● Transformations in OpenGL

● Timing for animation

● Begin first programming assignment
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Linear algebra primer
Three important data types:

● Scalar values

● Row / column vectors
• 1x4 and 4x1 are the sizes we'll most often encounter

● Square matrices
• 4x4 is the size we'll most often encounter
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Scalars
These are the numbers you know!

● Example: 3.14, 5.0, 99.9, 2, etc.
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Row vectors
These are special matrices that have multiple 

columns but only one row.
● Example:

Add and subtract the way you would expect.
● Example:

● Both vectors must be the same size.

Operate with scalars the way you would expect.
● Example:

Notice that vector multiplication is missing...

[5.0 3.14 37 ]

[1 2 3 ][9 10 11 ]=[10 12 14 ]

3.2×[1 2 3 ]=[3.2 6.4 9.6 ]



9-October-2007 © Copyright Ian D. Romanick 2007

Column vectors
These are special matrices that have multiple 

rows but only one column.
● Example:

Work just like row vectors.

[
1
2
3]
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Vector Operations
There are only a few operations specific to 

vectors that are really important for us.
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Dot Product
Noted as a “dot” between two vectors (e.g.,      )

Also known as “inner product.”

Multiply matching elements, sum all the results.
● Example:

A⋅B

[2.3 1.2 ]⋅[1.7 6.5 ]=2.3∗1.71.2∗6.5=11.71
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Vector Magnitude
Noted by vertical bars, like absolute value.

Take the square root of the dot product of the 
vector with itself...like absolute value.

Result is the magnitude (a.k.a. length) of the 
vector.
● Example:

∣[ 2
2

2
2 ]∣=[ 2

2
2
2 ]⋅[ 2

2
2
2 ]=

 2
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= 2
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Normalize
Noted by dividing a vector by its magnitude.

● Example:

Results in a vector with the same direction, but 
a magnitude of 1.0.

Works the same as with scalars.

A
∣A∣
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Why is the dot product so interesting?
 In 3-space, the dot of two unit vectors is the 

cosine of the angle between the two vectors.
● If the vectors are not already normalized (unit 

length), we can divide the dot product by the 
magnitudes.

● Example:
a⋅b
∣a∣∣b∣

=cos
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Cross Product
Noted as an X between two vectors (e.g.,       )

Derivation of the cross product is not important.  
The math is:

Only valid in 3-dimensions.

a×b

a×b=[a ybz−azb y azbx−axbz ax b y−a ybx ]
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Why is the cross product so interesting?
Two really useful properties.

● The result of the cross product between two vectors 
is a new vector that is perpendicular (also called 
normal) to both vectors.

● If the source vectors are 
normalized:

∣a×b∣=sin
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Matrices
Like vectors, but have multiple rows and 

columns.
● Example:

Add and subtract like you would expect.
● Like vectors, both matrices must be the same 

size...in both dimensions.

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]
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Matrix / vector multiplication
Special rules apply that make it different from 

scalar multiplication.
● Not commutative!  e.g.,

● Is associative.  e.g., 

● Column count of first matrix must match row count 
of second matrix.
• If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can 

do            , but not            .

● If the source matrices are n-by-m and m-by-p, the 
resulting matrix will be n-by-p.

M×N≠N×M

M×N N×M

NM P=N MP
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Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C, 

resulting from AB:

What does this look like?

C ij=r=1
n air brj
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Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C, 

resulting from AB:

What does this look like?
● The dot product of a row of A with a column of B.

● This is why the column count of A must match the 
row count of B...otherwise the dot product wouldn't 
work.

C ij=r=1
n air brj
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Multiplicative Identity
There is an identity for matrix multiplication.

Just like any other multiplicative identity,            
.
● If you pretend that a scalar is a 1x1 matrix, this 

should make sense.

I=[
1 0 ⋯ 0
0 1 ⋮
⋮ ⋱ 0
0 0 ⋯ 1

]
AI=A
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Transpose
Noted by a “T” in the exponent position          

(e.g.,     ).

The rows become the columns, and the 
columns become the rows.
● Example:

MT

[
2 3
4 5
6 7 ]

T

=[2 4 6
3 5 7]
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References
http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
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Rotation using matrices
Rotation around the 

Z-axis.
● If ϴ is 0, this is the 

identity matrix.

Rotations around the 
Y-axis.

[
cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

]
[

cos 0 sin 0
0 1 0 0

−sin 0 cos 0
0 0 0 1

]
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Question!
Looking at the previous equations, we can do a 

rotation using 4 multiplies and 2 adds, but the 
matrix multiply requires 16 multiplies and 12 
adds.
● x' = x cos ϴ + y sin ϴ
● y' = -x sin ϴ + y cos ϴ
● z' = z

Why use the matrix method?
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Matrices are more expressive!
 If we want to do a series of rotations with 

matrices we could do:

Which is the same as:

Look familiar?

v '=M1v
v ' '=M2v '
v ' ' '=M 3 v ' '

M 3 M2M 1v 
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Matrices are more expressive!
 If we want to do a series of rotations with 

matrices we could do:

Which is the same as:

Look familiar?
● Matrix multiplication is associative!

v '=M 1v
v ' '=M 2v '

v ' ' '=M 3v ' '

M 3M 2M 1v

M 3 M 2 M1v
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Translations with Matrices
Points are stored as p = [ x y z 1 ]

Remember the definition of matrix 
multiplication:

Since p
w
 is always 1, the 4th column of the 

matrix acts as a translation.

px '=px M11p y M12pz M13pw M14

p y '=px M21p y M22pz M23pw M24

pz '=px M31p y M32pz M33pw M34

pw '=px M41p y M42pz M43pw M44
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Scaling with Matrices
To scale, we just 

want to multiply each 
component by a scale 
factor.  Piece of cake!

M=[
Sx 0 0 0
0 S y 0 0
0 0 Sz 0
0 0 0 1

]
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References
http://en.wikipedia.org/wiki/Rotation_matrix

http://en.wikipedia.org/wiki/Rotation_matrix
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Break
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OpenGL Transformation Matrices
OpenGL has several matrix “stacks.”

● Each stack has a specific purpose.

● Active stack selected with glMatrixMode().
• OpenGL is modal, so ones a matrix stack is selected, all 

matrix commands will affact that stack.

For object transformations, use the 
GL_MODELVIEW matrix.
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Loading Matrices
 Initialize to the identity matrix with 
glLoadIdentity().

Load the matrix from your program with 
glLoadMatrix[fd]().
● GL matrices are column major, but C stores 2-

dimensional arrays row major.  Watch out!

● We'll use glLoadTransposeMatrix[fd]() later.

Can read matrix back with glGetFloatv().



9-October-2007 © Copyright Ian D. Romanick 2007

Matrix Operations
Multiply a matrix with the top of the stack using 

glMultMatrix[fd]().
● This is a post-multiply.

glPushMatrix() and glPopMatrix() save and 
restore the current top of stack.
● This means you can push, make changes, then pop 

to get back the previous matrix.

● The stack has a limited depth, so don't go crazy!

M top=M top∗M
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Builtin Transformation Operators
Several routines to create and concatenate 

common transformations:
● glRotate[fd]() - Create a rotation around an 

abritrary vector.

● glTranslate[fd]()
● glScale[fd]()
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Orthonormal Basis
Yes, it's a mouthful...but what does it mean?

A vector space where all of the components are 
orthogonal to each other, and each is normal.
● Normal meaning unit length.

● Orthogonal meaning at right angles to each other.

All pure rotation matrices (i.e., no scaling) are 
orthonormal bases.
● As is the identity matrix!

But how is this useful?
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Question!
Q: Given a world position for a camera, a world 

position to point the camera at, and an “up” 
direction, how can we construct a 
transformation using just rotations and 
translations?
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Question!
Q: Given a world position for a camera, a world 

position to point the camera at, and an “up” 
direction, how can we construct a 
transformation using just rotations and 
translations?

A: We can't.  We can construct an orthonormal 
basis from those 3 vectors.
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Camera “Look At” Matrix
E is the eye position

V is the point being 
viewed

U is the “up” direction

The function 
gluLookAt does 
this.

F=V−E

f=
F
∣F∣

, u=
U
∣U∣

s=u×f
t=s×f

M=[
s0 s1 s2 −E0

t 0 t1 t2 −E1

−f 0 −f 1 −f 2 −E2

0 0 0 1
]
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Example
U=[0 1 0 ] , E=[0 0 0 ] ,V=[sin


2

0 −cos

2 ]

f=V

s=f×U=[ f yU z− f zU y f zU x− f xU z f xU y− f yU x ]=[cos

2

0 sin

2 ]

t=s×f=[ s y f z−s z f y s z f x−s x f z s x f y−sy f x ]=[0 −sin

2 

2

cos

2 

2

0 ]

M=[
cos


2

0 sin

2

0

0 1 0 0

−sin 
2

0 cos 
2

0

0 0 0 1
]
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Look familiar?

M=[
cos


2

0 sin

2

0

0 1 0 0

−sin

2

0 cos

2

0

0 0 0 1
]

R=[
cos 0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1
]
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Break
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Timing for Animation
Animations should run at a consistent speed 

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C 

program in the background, the animation should 
not slow down.

What do we need in order to accomplish this?
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Timing for Animation
Animations should run at a consistent speed 

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C 

program in the background, the animation should 
not slow down.

What do we need in order to accomplish this?
● We need to know how much time has elapsed since 

the last frame.
• SDL_GetTicks() gives us this information.

● We also need to think of animation in terms of how 
long it takes to do something.
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Example
static Uint32 last_t = ~0;

// Calculate time elapsed since last frame. 
// SDL_GetTicks returns the time in milliseconds.
const Uint32 t = SDL_GetTicks();

if (last_t != (Uint32) ~0) {
    float dt = (float)(t – last_t) / 1000.0;

    // One complete revolution every 3 seconds.
    rotation_angle += dt * ((2.0 * M_PI) / 3.0);
}

// Update last_t.
last_t = t;
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Next week...
Lighting and materials

Second programming will be assigned.

First programming assignment is due.
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Legal Statement
 This work represents the view of the authors and does not necessarily 

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States, 
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or 
service marks of others.


