
9-October-2007 © Copyright Ian D. Romanick 2007

Graphics Programming I

Agenda:
● Linear algebra primer

● Transformations in OpenGL

● Timing for animation

● Begin first programming assignment

9-October-2007 © Copyright Ian D. Romanick 2007

Linear algebra primer
Three important data types:

● Scalar values

● Row / column vectors
• 1x4 and 4x1 are the sizes we'll most often encounter

● Square matrices
• 4x4 is the size we'll most often encounter

9-October-2007 © Copyright Ian D. Romanick 2007

Scalars
These are the numbers you know!

● Example: 3.14, 5.0, 99.9, 2, etc.

9-October-2007 © Copyright Ian D. Romanick 2007

Row vectors
These are special matrices that have multiple

columns but only one row.
● Example:

Add and subtract the way you would expect.
● Example:

● Both vectors must be the same size.

Operate with scalars the way you would expect.
● Example:

Notice that vector multiplication is missing...

[5.0 3.14 37]

[1 2 3][9 10 11]=[10 12 14]

3.2×[1 2 3]=[3.2 6.4 9.6]

9-October-2007 © Copyright Ian D. Romanick 2007

Column vectors
These are special matrices that have multiple

rows but only one column.
● Example:

Work just like row vectors.

[
1
2
3]

9-October-2007 © Copyright Ian D. Romanick 2007

Vector Operations
There are only a few operations specific to

vectors that are really important for us.

9-October-2007 © Copyright Ian D. Romanick 2007

Dot Product
Noted as a “dot” between two vectors (e.g.,)

Also known as “inner product.”

Multiply matching elements, sum all the results.
● Example:

A⋅B

[2.3 1.2]⋅[1.7 6.5]=2.3∗1.71.2∗6.5=11.71

9-October-2007 © Copyright Ian D. Romanick 2007

Vector Magnitude
Noted by vertical bars, like absolute value.

Take the square root of the dot product of the
vector with itself...like absolute value.

Result is the magnitude (a.k.a. length) of the
vector.
● Example:

∣[2
2

2
2]∣=[2

2
2
2]⋅[2

2
2
2]=

 2
2

2

 2
2

2

= 2
4

2
4
=1

9-October-2007 © Copyright Ian D. Romanick 2007

Normalize
Noted by dividing a vector by its magnitude.

● Example:

Results in a vector with the same direction, but
a magnitude of 1.0.

Works the same as with scalars.

A
∣A∣

9-October-2007 © Copyright Ian D. Romanick 2007

Why is the dot product so interesting?
 In 3-space, the dot of two unit vectors is the

cosine of the angle between the two vectors.
● If the vectors are not already normalized (unit

length), we can divide the dot product by the
magnitudes.

● Example:
a⋅b
∣a∣∣b∣

=cos

9-October-2007 © Copyright Ian D. Romanick 2007

Cross Product
Noted as an X between two vectors (e.g.,)

Derivation of the cross product is not important.
The math is:

Only valid in 3-dimensions.

a×b

a×b=[a ybz−azb y azbx−axbz ax b y−a ybx]

9-October-2007 © Copyright Ian D. Romanick 2007

Why is the cross product so interesting?
Two really useful properties.

● The result of the cross product between two vectors
is a new vector that is perpendicular (also called
normal) to both vectors.

● If the source vectors are
normalized:

∣a×b∣=sin

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices
Like vectors, but have multiple rows and

columns.
● Example:

Add and subtract like you would expect.
● Like vectors, both matrices must be the same

size...in both dimensions.

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication
Special rules apply that make it different from

scalar multiplication.
● Not commutative! e.g.,

● Is associative. e.g.,

● Column count of first matrix must match row count
of second matrix.
• If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can

do , but not .

● If the source matrices are n-by-m and m-by-p, the
resulting matrix will be n-by-p.

M×N≠N×M

M×N N×M

NM P=N MP

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?

C ij=r=1
n air brj

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?
● The dot product of a row of A with a column of B.

● This is why the column count of A must match the
row count of B...otherwise the dot product wouldn't
work.

C ij=r=1
n air brj

9-October-2007 © Copyright Ian D. Romanick 2007

Multiplicative Identity
There is an identity for matrix multiplication.

Just like any other multiplicative identity,
.
● If you pretend that a scalar is a 1x1 matrix, this

should make sense.

I=[
1 0 ⋯ 0
0 1 ⋮
⋮ ⋱ 0
0 0 ⋯ 1

]
AI=A

9-October-2007 © Copyright Ian D. Romanick 2007

Transpose
Noted by a “T” in the exponent position

(e.g.,).

The rows become the columns, and the
columns become the rows.
● Example:

MT

[
2 3
4 5
6 7]

T

=[2 4 6
3 5 7]

9-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

9-October-2007 © Copyright Ian D. Romanick 2007

Rotation using matrices
Rotation around the

Z-axis.
● If ϴ is 0, this is the

identity matrix.

Rotations around the
Y-axis.

[
cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

]
[

cos 0 sin 0
0 1 0 0

−sin 0 cos 0
0 0 0 1

]

9-October-2007 © Copyright Ian D. Romanick 2007

Question!
Looking at the previous equations, we can do a

rotation using 4 multiplies and 2 adds, but the
matrix multiply requires 16 multiplies and 12
adds.
● x' = x cos ϴ + y sin ϴ
● y' = -x sin ϴ + y cos ϴ
● z' = z

Why use the matrix method?

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices are more expressive!
 If we want to do a series of rotations with

matrices we could do:

Which is the same as:

Look familiar?

v '=M1v
v ' '=M2v '
v ' ' '=M 3 v ' '

M 3 M2M 1v

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices are more expressive!
 If we want to do a series of rotations with

matrices we could do:

Which is the same as:

Look familiar?
● Matrix multiplication is associative!

v '=M 1v
v ' '=M 2v '

v ' ' '=M 3v ' '

M 3M 2M 1v

M 3 M 2 M1v

9-October-2007 © Copyright Ian D. Romanick 2007

Translations with Matrices
Points are stored as p = [x y z 1]

Remember the definition of matrix
multiplication:

Since p
w
 is always 1, the 4th column of the

matrix acts as a translation.

px '=px M11p y M12pz M13pw M14

p y '=px M21p y M22pz M23pw M24

pz '=px M31p y M32pz M33pw M34

pw '=px M41p y M42pz M43pw M44

9-October-2007 © Copyright Ian D. Romanick 2007

Scaling with Matrices
To scale, we just

want to multiply each
component by a scale
factor. Piece of cake!

M=[
Sx 0 0 0
0 S y 0 0
0 0 Sz 0
0 0 0 1

]

9-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Rotation_matrix

http://en.wikipedia.org/wiki/Rotation_matrix

9-October-2007 © Copyright Ian D. Romanick 2007

Break

9-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Transformation Matrices
OpenGL has several matrix “stacks.”

● Each stack has a specific purpose.

● Active stack selected with glMatrixMode().
• OpenGL is modal, so ones a matrix stack is selected, all

matrix commands will affact that stack.

For object transformations, use the
GL_MODELVIEW matrix.

9-October-2007 © Copyright Ian D. Romanick 2007

Loading Matrices
 Initialize to the identity matrix with
glLoadIdentity().

Load the matrix from your program with
glLoadMatrix[fd]().
● GL matrices are column major, but C stores 2-

dimensional arrays row major. Watch out!

● We'll use glLoadTransposeMatrix[fd]() later.

Can read matrix back with glGetFloatv().

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix Operations
Multiply a matrix with the top of the stack using

glMultMatrix[fd]().
● This is a post-multiply.

glPushMatrix() and glPopMatrix() save and
restore the current top of stack.
● This means you can push, make changes, then pop

to get back the previous matrix.

● The stack has a limited depth, so don't go crazy!

M top=M top∗M

9-October-2007 © Copyright Ian D. Romanick 2007

Builtin Transformation Operators
Several routines to create and concatenate

common transformations:
● glRotate[fd]() - Create a rotation around an

abritrary vector.

● glTranslate[fd]()
● glScale[fd]()

9-October-2007 © Copyright Ian D. Romanick 2007

Orthonormal Basis
Yes, it's a mouthful...but what does it mean?

A vector space where all of the components are
orthogonal to each other, and each is normal.
● Normal meaning unit length.

● Orthogonal meaning at right angles to each other.

All pure rotation matrices (i.e., no scaling) are
orthonormal bases.
● As is the identity matrix!

But how is this useful?

9-October-2007 © Copyright Ian D. Romanick 2007

Question!
Q: Given a world position for a camera, a world

position to point the camera at, and an “up”
direction, how can we construct a
transformation using just rotations and
translations?

9-October-2007 © Copyright Ian D. Romanick 2007

Question!
Q: Given a world position for a camera, a world

position to point the camera at, and an “up”
direction, how can we construct a
transformation using just rotations and
translations?

A: We can't. We can construct an orthonormal
basis from those 3 vectors.

9-October-2007 © Copyright Ian D. Romanick 2007

Camera “Look At” Matrix
E is the eye position

V is the point being
viewed

U is the “up” direction

The function
gluLookAt does
this.

F=V−E

f=
F
∣F∣

, u=
U
∣U∣

s=u×f
t=s×f

M=[
s0 s1 s2 −E0

t 0 t1 t2 −E1

−f 0 −f 1 −f 2 −E2

0 0 0 1
]

9-October-2007 © Copyright Ian D. Romanick 2007

Example
U=[0 1 0] , E=[0 0 0] ,V=[sin

2

0 −cos

2]

f=V

s=f×U=[f yU z− f zU y f zU x− f xU z f xU y− f yU x]=[cos

2

0 sin

2]

t=s×f=[s y f z−s z f y s z f x−s x f z s x f y−sy f x]=[0 −sin

2

2

cos

2

2

0]

M=[
cos

2

0 sin

2

0

0 1 0 0

−sin
2

0 cos
2

0

0 0 0 1
]

9-October-2007 © Copyright Ian D. Romanick 2007

Look familiar?

M=[
cos

2

0 sin

2

0

0 1 0 0

−sin

2

0 cos

2

0

0 0 0 1
]

R=[
cos 0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1
]

9-October-2007 © Copyright Ian D. Romanick 2007

References
http://www.wikipedia.org/Orthonormal_basis

http://www.wikipedia.org/Orthonormal_basis

9-October-2007 © Copyright Ian D. Romanick 2007

Break

9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation
Animations should run at a consistent speed

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C

program in the background, the animation should
not slow down.

What do we need in order to accomplish this?

9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation
Animations should run at a consistent speed

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C

program in the background, the animation should
not slow down.

What do we need in order to accomplish this?
● We need to know how much time has elapsed since

the last frame.
• SDL_GetTicks() gives us this information.

● We also need to think of animation in terms of how
long it takes to do something.

9-October-2007 © Copyright Ian D. Romanick 2007

Example
static Uint32 last_t = ~0;

// Calculate time elapsed since last frame.
// SDL_GetTicks returns the time in milliseconds.
const Uint32 t = SDL_GetTicks();

if (last_t != (Uint32) ~0) {
 float dt = (float)(t – last_t) / 1000.0;

 // One complete revolution every 3 seconds.
 rotation_angle += dt * ((2.0 * M_PI) / 3.0);
}

// Update last_t.
last_t = t;

9-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Lighting and materials

Second programming will be assigned.

First programming assignment is due.

9-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

