
9-October-2007 © Copyright Ian D. Romanick 2007

Graphics Programming I

Agenda:
● Linear algebra primer

● Transformations in OpenGL

● Timing for animation

● Begin first programming assignment

9-October-2007 © Copyright Ian D. Romanick 2007

Linear algebra primer
Three important data types:

● Scalar values

● Row / column vectors
• 1x4 and 4x1 are the sizes we'll most often encounter

● Square matrices
• 4x4 is the size we'll most often encounter

9-October-2007 © Copyright Ian D. Romanick 2007

Scalars
These are the numbers you know!

● Example: 3.14, 5.0, 99.9, 2, etc.

9-October-2007 © Copyright Ian D. Romanick 2007

Row vectors
These are special matrices that have multiple

columns but only one row.
● Example:

Add and subtract the way you would expect.
● Example:

● Both vectors must be the same size.

Operate with scalars the way you would expect.
● Example:

Notice that vector multiplication is missing...

[5.0 3.14 37]

[1 2 3][9 10 11]=[10 12 14]

3.2×[1 2 3]=[3.2 6.4 9.6]

9-October-2007 © Copyright Ian D. Romanick 2007

Column vectors
These are special matrices that have multiple

rows but only one column.
● Example:

Work just like row vectors.

[
1
2
3]

9-October-2007 © Copyright Ian D. Romanick 2007

Vector Operations
There are only a few operations specific to

vectors that are really important for us.

9-October-2007 © Copyright Ian D. Romanick 2007

Dot Product
Noted as a “dot” between two vectors (e.g.,)

Also known as “inner product.”

Multiply matching elements, sum all the results.
● Example:

A⋅B

[2.3 1.2]⋅[1.7 6.5]=2.3∗1.71.2∗6.5=11.71

9-October-2007 © Copyright Ian D. Romanick 2007

Vector Magnitude
Noted by vertical bars, like absolute value.

Take the square root of the dot product of the
vector with itself...like absolute value.

Result is the magnitude (a.k.a. length) of the
vector.
● Example:

∣[2
2

2
2]∣=[2

2
2
2]⋅[2

2
2
2]=

 2
2 

2

 2
2 

2

= 2
4


2
4
=1

9-October-2007 © Copyright Ian D. Romanick 2007

Normalize
Noted by dividing a vector by its magnitude.

● Example:

Results in a vector with the same direction, but
a magnitude of 1.0.

Works the same as with scalars.

A
∣A∣

9-October-2007 © Copyright Ian D. Romanick 2007

Why is the dot product so interesting?
 In 3-space, the dot of two unit vectors is the

cosine of the angle between the two vectors.
● If the vectors are not already normalized (unit

length), we can divide the dot product by the
magnitudes.

● Example:
a⋅b
∣a∣∣b∣

=cos

9-October-2007 © Copyright Ian D. Romanick 2007

Cross Product
Noted as an X between two vectors (e.g.,)

Derivation of the cross product is not important.
The math is:

Only valid in 3-dimensions.

a×b

a×b=[a ybz−azb y azbx−axbz ax b y−a ybx]

9-October-2007 © Copyright Ian D. Romanick 2007

Why is the cross product so interesting?
Two really useful properties.

● The result of the cross product between two vectors
is a new vector that is perpendicular (also called
normal) to both vectors.

● If the source vectors are
normalized:

∣a×b∣=sin

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices
Like vectors, but have multiple rows and

columns.
● Example:

Add and subtract like you would expect.
● Like vectors, both matrices must be the same

size...in both dimensions.

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication
Special rules apply that make it different from

scalar multiplication.
● Not commutative! e.g.,

● Is associative. e.g.,

● Column count of first matrix must match row count
of second matrix.
• If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can

do , but not .

● If the source matrices are n-by-m and m-by-p, the
resulting matrix will be n-by-p.

M×N≠N×M

M×N N×M

NM P=N MP

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?

C ij=r=1
n air brj

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?
● The dot product of a row of A with a column of B.

● This is why the column count of A must match the
row count of B...otherwise the dot product wouldn't
work.

C ij=r=1
n air brj

9-October-2007 © Copyright Ian D. Romanick 2007

Multiplicative Identity
There is an identity for matrix multiplication.

Just like any other multiplicative identity,
.
● If you pretend that a scalar is a 1x1 matrix, this

should make sense.

I=[
1 0 ⋯ 0
0 1 ⋮
⋮ ⋱ 0
0 0 ⋯ 1

]
AI=A

9-October-2007 © Copyright Ian D. Romanick 2007

Transpose
Noted by a “T” in the exponent position

(e.g.,).

The rows become the columns, and the
columns become the rows.
● Example:

MT

[
2 3
4 5
6 7]

T

=[2 4 6
3 5 7]

9-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

9-October-2007 © Copyright Ian D. Romanick 2007

Rotation using matrices
Rotation around the

Z-axis.
● If ϴ is 0, this is the

identity matrix.

Rotations around the
Y-axis.

[
cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

]
[

cos 0 sin 0
0 1 0 0

−sin 0 cos 0
0 0 0 1

]

9-October-2007 © Copyright Ian D. Romanick 2007

Question!
Looking at the previous equations, we can do a

rotation using 4 multiplies and 2 adds, but the
matrix multiply requires 16 multiplies and 12
adds.
● x' = x cos ϴ + y sin ϴ
● y' = -x sin ϴ + y cos ϴ
● z' = z

Why use the matrix method?

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices are more expressive!
 If we want to do a series of rotations with

matrices we could do:

Which is the same as:

Look familiar?

v '=M1v
v ' '=M2v '
v ' ' '=M 3 v ' '

M 3 M2M 1v 

9-October-2007 © Copyright Ian D. Romanick 2007

Matrices are more expressive!
 If we want to do a series of rotations with

matrices we could do:

Which is the same as:

Look familiar?
● Matrix multiplication is associative!

v '=M 1v
v ' '=M 2v '

v ' ' '=M 3v ' '

M 3M 2M 1v

M 3 M 2 M1v

9-October-2007 © Copyright Ian D. Romanick 2007

Translations with Matrices
Points are stored as p = [x y z 1]

Remember the definition of matrix
multiplication:

Since p
w
 is always 1, the 4th column of the

matrix acts as a translation.

px '=px M11p y M12pz M13pw M14

p y '=px M21p y M22pz M23pw M24

pz '=px M31p y M32pz M33pw M34

pw '=px M41p y M42pz M43pw M44

9-October-2007 © Copyright Ian D. Romanick 2007

Scaling with Matrices
To scale, we just

want to multiply each
component by a scale
factor. Piece of cake!

M=[
Sx 0 0 0
0 S y 0 0
0 0 Sz 0
0 0 0 1

]

9-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Rotation_matrix

http://en.wikipedia.org/wiki/Rotation_matrix

9-October-2007 © Copyright Ian D. Romanick 2007

Break

9-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Transformation Matrices
OpenGL has several matrix “stacks.”

● Each stack has a specific purpose.

● Active stack selected with glMatrixMode().
• OpenGL is modal, so ones a matrix stack is selected, all

matrix commands will affact that stack.

For object transformations, use the
GL_MODELVIEW matrix.

9-October-2007 © Copyright Ian D. Romanick 2007

Loading Matrices
 Initialize to the identity matrix with
glLoadIdentity().

Load the matrix from your program with
glLoadMatrix[fd]().
● GL matrices are column major, but C stores 2-

dimensional arrays row major. Watch out!

● We'll use glLoadTransposeMatrix[fd]() later.

Can read matrix back with glGetFloatv().

9-October-2007 © Copyright Ian D. Romanick 2007

Matrix Operations
Multiply a matrix with the top of the stack using

glMultMatrix[fd]().
● This is a post-multiply.

glPushMatrix() and glPopMatrix() save and
restore the current top of stack.
● This means you can push, make changes, then pop

to get back the previous matrix.

● The stack has a limited depth, so don't go crazy!

M top=M top∗M

9-October-2007 © Copyright Ian D. Romanick 2007

Built­in Transformation Operators
Several routines to create and concatenate

common transformations:
● glRotate[fd]() - Create a rotation around an

abritrary vector.

● glTranslate[fd]()
● glScale[fd]()

9-October-2007 © Copyright Ian D. Romanick 2007

Orthonormal Basis
Yes, it's a mouthful...but what does it mean?

A vector space where all of the components are
orthogonal to each other, and each is normal.
● Normal meaning unit length.

● Orthogonal meaning at right angles to each other.

All pure rotation matrices (i.e., no scaling) are
orthonormal bases.
● As is the identity matrix!

But how is this useful?

9-October-2007 © Copyright Ian D. Romanick 2007

Question!
Q: Given a world position for a camera, a world

position to point the camera at, and an “up”
direction, how can we construct a
transformation using just rotations and
translations?

9-October-2007 © Copyright Ian D. Romanick 2007

Question!
Q: Given a world position for a camera, a world

position to point the camera at, and an “up”
direction, how can we construct a
transformation using just rotations and
translations?

A: We can't. We can construct an orthonormal
basis from those 3 vectors.

9-October-2007 © Copyright Ian D. Romanick 2007

Camera “Look At” Matrix
E is the eye position

V is the point being
viewed

U is the “up” direction

The function
gluLookAt does
this.

F=V−E

f=
F
∣F∣

, u=
U
∣U∣

s=u×f
t=s×f

M=[
s0 s1 s2 −E0

t 0 t1 t2 −E1

−f 0 −f 1 −f 2 −E2

0 0 0 1
]

9-October-2007 © Copyright Ian D. Romanick 2007

Example
U=[0 1 0] , E=[0 0 0] ,V=[sin


2

0 −cos

2]

f=V

s=f×U=[f yU z− f zU y f zU x− f xU z f xU y− f yU x]=[cos

2

0 sin

2]

t=s×f=[s y f z−s z f y s z f x−s x f z s x f y−sy f x]=[0 −sin

2 

2

cos

2 

2

0]

M=[
cos


2

0 sin

2

0

0 1 0 0

−sin 
2

0 cos 
2

0

0 0 0 1
]

9-October-2007 © Copyright Ian D. Romanick 2007

Look familiar?

M=[
cos


2

0 sin

2

0

0 1 0 0

−sin

2

0 cos

2

0

0 0 0 1
]

R=[
cos 0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1
]

9-October-2007 © Copyright Ian D. Romanick 2007

References
http://www.wikipedia.org/Orthonormal_basis

http://www.wikipedia.org/Orthonormal_basis

9-October-2007 © Copyright Ian D. Romanick 2007

Break

9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation
Animations should run at a consistent speed

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C

program in the background, the animation should
not slow down.

What do we need in order to accomplish this?

9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation
Animations should run at a consistent speed

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C

program in the background, the animation should
not slow down.

What do we need in order to accomplish this?
● We need to know how much time has elapsed since

the last frame.
• SDL_GetTicks() gives us this information.

● We also need to think of animation in terms of how
long it takes to do something.

9-October-2007 © Copyright Ian D. Romanick 2007

Example
static Uint32 last_t = ~0;

// Calculate time elapsed since last frame.
// SDL_GetTicks returns the time in milliseconds.
const Uint32 t = SDL_GetTicks();

if (last_t != (Uint32) ~0) {
 float dt = (float)(t – last_t) / 1000.0;

 // One complete revolution every 3 seconds.
 rotation_angle += dt * ((2.0 * M_PI) / 3.0);
}

// Update last_t.
last_t = t;

9-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Lighting and materials

Second programming will be assigned.

First programming assignment is due.

9-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

