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Graphics Programming I

Agenda:
● Linear algebra primer

● Transformations in OpenGL

● Timing for animation

● Begin first programming assignment
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Linear algebra primer
Three important data types:

● Scalar values

● Row / column vectors
• 1x4 and 4x1 are the sizes we'll most often encounter

● Square matrices
• 4x4 is the size we'll most often encounter
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Scalars
These are the numbers you know!

● Example: 3.14, 5.0, 99.9, 2, etc.
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Row vectors
These are special matrices that have multiple 

columns but only one row.
● Example:

Add and subtract the way you would expect.
● Example:

● Both vectors must be the same size.

Operate with scalars the way you would expect.
● Example:

Notice that vector multiplication is missing...

[5.0 3.14 37 ]

[1 2 3 ][9 10 11 ]=[10 12 14 ]

3.2×[1 2 3 ]=[3.2 6.4 9.6 ]
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Column vectors
These are special matrices that have multiple 

rows but only one column.
● Example:

Work just like row vectors.

[
1
2
3]
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Vector Operations
There are only a few operations specific to 

vectors that are really important for us.
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Dot Product
Noted as a “dot” between two vectors (e.g.,      )

Also known as “inner product.”

Multiply matching elements, sum all the results.
● Example:

A⋅B

[2.3 1.2 ]⋅[1.7 6.5 ]=2.3∗1.71.2∗6.5=11.71
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Vector Magnitude
Noted by vertical bars, like absolute value.

Take the square root of the dot product of the 
vector with itself...like absolute value.

Result is the magnitude (a.k.a. length) of the 
vector.
● Example:

∣[ 2
2

2
2 ]∣=[ 2

2
2
2 ]⋅[ 2

2
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Normalize
Noted by dividing a vector by its magnitude.

● Example:

Results in a vector with the same direction, but 
a magnitude of 1.0.

Works the same as with scalars.

A
∣A∣
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Why is the dot product so interesting?
 In 3-space, the dot of two unit vectors is the 

cosine of the angle between the two vectors.
● If the vectors are not already normalized (unit 

length), we can divide the dot product by the 
magnitudes.

● Example:
a⋅b
∣a∣∣b∣

=cos
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Cross Product
Noted as an X between two vectors (e.g.,       )

Derivation of the cross product is not important.  
The math is:

Only valid in 3-dimensions.

a×b

a×b=[a ybz−azb y azbx−axbz ax b y−a ybx ]
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Why is the cross product so interesting?
Two really useful properties.

● The result of the cross product between two vectors 
is a new vector that is perpendicular (also called 
normal) to both vectors.

● If the source vectors are 
normalized:

∣a×b∣=sin
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Matrices
Like vectors, but have multiple rows and 

columns.
● Example:

Add and subtract like you would expect.
● Like vectors, both matrices must be the same 

size...in both dimensions.

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]
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Matrix / vector multiplication
Special rules apply that make it different from 

scalar multiplication.
● Not commutative!  e.g.,

● Is associative.  e.g., 

● Column count of first matrix must match row count 
of second matrix.
• If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can 

do            , but not            .

● If the source matrices are n-by-m and m-by-p, the 
resulting matrix will be n-by-p.

M×N≠N×M

M×N N×M

NM P=N MP
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Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C, 

resulting from AB:

What does this look like?

C ij=r=1
n air brj
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Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C, 

resulting from AB:

What does this look like?
● The dot product of a row of A with a column of B.

● This is why the column count of A must match the 
row count of B...otherwise the dot product wouldn't 
work.

C ij=r=1
n air brj
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Multiplicative Identity
There is an identity for matrix multiplication.

Just like any other multiplicative identity,            
.
● If you pretend that a scalar is a 1x1 matrix, this 

should make sense.

I=[
1 0 ⋯ 0
0 1 ⋮
⋮ ⋱ 0
0 0 ⋯ 1

]
AI=A
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Transpose
Noted by a “T” in the exponent position          

(e.g.,     ).

The rows become the columns, and the 
columns become the rows.
● Example:

MT

[
2 3
4 5
6 7 ]

T

=[2 4 6
3 5 7]



9-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product
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Rotation using matrices
Rotation around the 

Z-axis.
● If ϴ is 0, this is the 

identity matrix.

Rotations around the 
Y-axis.

[
cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

]
[

cos 0 sin 0
0 1 0 0

−sin 0 cos 0
0 0 0 1

]
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Question!
Looking at the previous equations, we can do a 

rotation using 4 multiplies and 2 adds, but the 
matrix multiply requires 16 multiplies and 12 
adds.
● x' = x cos ϴ + y sin ϴ
● y' = -x sin ϴ + y cos ϴ
● z' = z

Why use the matrix method?
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Matrices are more expressive!
 If we want to do a series of rotations with 

matrices we could do:

Which is the same as:

Look familiar?

v '=M1v
v ' '=M2v '
v ' ' '=M 3 v ' '

M 3 M2M 1v 
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Matrices are more expressive!
 If we want to do a series of rotations with 

matrices we could do:

Which is the same as:

Look familiar?
● Matrix multiplication is associative!

v '=M 1v
v ' '=M 2v '

v ' ' '=M 3v ' '

M 3M 2M 1v

M 3 M 2 M1v
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Translations with Matrices
Points are stored as p = [ x y z 1 ]

Remember the definition of matrix 
multiplication:

Since p
w
 is always 1, the 4th column of the 

matrix acts as a translation.

px '=px M11p y M12pz M13pw M14

p y '=px M21p y M22pz M23pw M24

pz '=px M31p y M32pz M33pw M34

pw '=px M41p y M42pz M43pw M44
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Scaling with Matrices
To scale, we just 

want to multiply each 
component by a scale 
factor.  Piece of cake!

M=[
Sx 0 0 0
0 S y 0 0
0 0 Sz 0
0 0 0 1

]
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References
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http://en.wikipedia.org/wiki/Rotation_matrix
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Break
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OpenGL Transformation Matrices
OpenGL has several matrix “stacks.”

● Each stack has a specific purpose.

● Active stack selected with glMatrixMode().
• OpenGL is modal, so ones a matrix stack is selected, all 

matrix commands will affact that stack.

For object transformations, use the 
GL_MODELVIEW matrix.
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Loading Matrices
 Initialize to the identity matrix with 
glLoadIdentity().

Load the matrix from your program with 
glLoadMatrix[fd]().
● GL matrices are column major, but C stores 2-

dimensional arrays row major.  Watch out!

● We'll use glLoadTransposeMatrix[fd]() later.

Can read matrix back with glGetFloatv().
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Matrix Operations
Multiply a matrix with the top of the stack using 

glMultMatrix[fd]().
● This is a post-multiply.

glPushMatrix() and glPopMatrix() save and 
restore the current top of stack.
● This means you can push, make changes, then pop 

to get back the previous matrix.

● The stack has a limited depth, so don't go crazy!

M top=M top∗M
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Built­in Transformation Operators
Several routines to create and concatenate 

common transformations:
● glRotate[fd]() - Create a rotation around an 

abritrary vector.

● glTranslate[fd]()
● glScale[fd]()
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Orthonormal Basis
Yes, it's a mouthful...but what does it mean?

A vector space where all of the components are 
orthogonal to each other, and each is normal.
● Normal meaning unit length.

● Orthogonal meaning at right angles to each other.

All pure rotation matrices (i.e., no scaling) are 
orthonormal bases.
● As is the identity matrix!

But how is this useful?
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Question!
Q: Given a world position for a camera, a world 

position to point the camera at, and an “up” 
direction, how can we construct a 
transformation using just rotations and 
translations?
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Question!
Q: Given a world position for a camera, a world 

position to point the camera at, and an “up” 
direction, how can we construct a 
transformation using just rotations and 
translations?

A: We can't.  We can construct an orthonormal 
basis from those 3 vectors.
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Camera “Look At” Matrix
E is the eye position

V is the point being 
viewed

U is the “up” direction

The function 
gluLookAt does 
this.

F=V−E

f=
F
∣F∣

, u=
U
∣U∣

s=u×f
t=s×f

M=[
s0 s1 s2 −E0

t 0 t1 t2 −E1

−f 0 −f 1 −f 2 −E2

0 0 0 1
]
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Example
U=[0 1 0 ] , E=[0 0 0 ] ,V=[sin


2

0 −cos

2 ]

f=V

s=f×U=[ f yU z− f zU y f zU x− f xU z f xU y− f yU x ]=[cos

2

0 sin

2 ]

t=s×f=[ s y f z−s z f y s z f x−s x f z s x f y−sy f x ]=[0 −sin

2 

2

cos

2 

2

0 ]

M=[
cos


2

0 sin

2

0

0 1 0 0

−sin 
2

0 cos 
2

0

0 0 0 1
]
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Look familiar?

M=[
cos


2

0 sin

2

0

0 1 0 0

−sin

2

0 cos

2

0

0 0 0 1
]

R=[
cos 0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1
]
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Break



9-October-2007 © Copyright Ian D. Romanick 2007

Timing for Animation
Animations should run at a consistent speed 

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C 

program in the background, the animation should 
not slow down.

What do we need in order to accomplish this?
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Timing for Animation
Animations should run at a consistent speed 

regardless of the rendering speed
● If someone starts ripping a CD or compiling a C 

program in the background, the animation should 
not slow down.

What do we need in order to accomplish this?
● We need to know how much time has elapsed since 

the last frame.
• SDL_GetTicks() gives us this information.

● We also need to think of animation in terms of how 
long it takes to do something.
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Example
static Uint32 last_t = ~0;

// Calculate time elapsed since last frame. 
// SDL_GetTicks returns the time in milliseconds.
const Uint32 t = SDL_GetTicks();

if (last_t != (Uint32) ~0) {
    float dt = (float)(t – last_t) / 1000.0;

    // One complete revolution every 3 seconds.
    rotation_angle += dt * ((2.0 * M_PI) / 3.0);
}

// Update last_t.
last_t = t;
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Next week...
Lighting and materials

Second programming will be assigned.

First programming assignment is due.
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Legal Statement
 This work represents the view of the authors and does not necessarily 

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States, 
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or 
service marks of others.


